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MATHEMATICAL ANALYSIS OF CURRENT DISTRIBUTION IN
CORROSION CELLS WITH CIRCULAR GEOMETRY

INTRODUCTION

In the case of uniform corrosion, existent local anodes and cathodes are distributed
randomly over the surface, and their individual locations fluctuate with time. In this
situation, the electrode has a "mixed" potential [1] which, like the current density, is
uniform throughout the metal surface.

In many cases, however, anodic and cathodic reactions occur on different surfaces, as
in the galvanic corrosion of dissimilar metals, or on different parts of the same surface, as
with localized geometries such as corrosion pits or crevices. In these instances, there is a
varying distribution of both current and potential over the metal surface.

Waber and coworkers [2 - 6] have treated the current distribution in systems where
the anode and cathode are coplanar, parallel strips of infinite length. This method of
calculation has been extended recently to two-dimensional geometries for coplanar, con-
centric rectangles [7] and circles [8].

In the case of circular geometries, Gal-Or, Raz, and Yahalom [8] have calculated the
total current between coplanar electrodes under a thin layer of electrolyte, although these
authors did not evaluate the local current along the cell radius. In many instances of
localized corrosion, the corroding metal has a circular geometry. Examples include some
instances of pitting [9], corrosion under tubercules on copper [10], and crevice corrosion
under O-rings or washers [11]. Thus it would be useful to map the corrosion current
distribution in systems of circular geometry.

The purpose of this report is thus to supplement the recent work of Gal-Or and
coworkers [8] by evaluating the distribution of current and potential in systems of
circular electrodes as a function of variable cell dimensions and linear polarization param-
eters. Both bulk electrolyte and thin-electrolyte layers will be considered.

MATHEMATICAL BACKGROUND

The mathematical method used by Waber and coworkers [2 - 6] is well known. This
section will sketch the elements of that method. The paper by Gal-Or and coworkers
[8] gives a detailed account of their solution for the particular case of circular electrodes
covered by a thin layer of electrolyte. The derivation for concentric circular electrodes
under bulk electrolyte has not been published, although the derivation is quite similar to
the thin-layer case. The equation for the bulk case will be derived in this report for
completeness. It will be seen that the current distribution for bulk electrolyte is the
limiting case for thin layers.

Manuscript submitted October 17, 1974.

1



E. McCAFFERTY

Potential Distribution

The following will apply to a generalized geometry in which the electrode surfaces
are placed in the XY plane, as shown in Fig. 1. No specific geometry is yet assumed.

The central assumption is that the electrostatic potential P at any point in the
electrolyte is given by Laplace's equation

32p 32 p a2 p
+ =-0.

ax2 +y2 az2 (1)

Laplace's equation is valid if the following conditions are met:

(1) There are no concentration gradients in the electrolyte (uniform composition).

(2) The solution is electroneutral.

(3) There are no sources or sinks of ions in the bulk electrolyte.

For more detail see Ref. 12. To solve Eq. (1), one must solve a boundary-value problem
for which the potential is specified at the boundaries of the electrolyte, including the
electrode surface.

0

P(x,O)

-ELECTROLYTE

- ANODE -| CATHODE -
a

x
C

0

Fig. 1-Coordinate system and electrode po-
tentials along the metal surface (y = constant,
z = 0)
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Current Density

The current density i(A/cm 2) at any point in the electrolyte is related to the potential
by

(2)
aPi. =-or-,
an 

where a is the solution conductivity (ohm--1cm-l) and aP/an is the normal gradient of
the potential (v cm-1) in the direction of the interior of the electrolyte. At the electrode
surface (z = 0),

i(x, 0) = -a [P(x, Z)] (3)

Thus when Laplace's equation is solved for P(x, z), the corrosion current distribution
follows from Eq. (3).

Linear Polarization

Waber [2 - 6], following Wagner [13], assumed linear polarization, that is, that plots
of current density vs electrode potential are linear. This assumption, intended to simplify
the mathematics, is a reasonable approximation in a number of cases.

Figure 1 also shows the potential distribution along the electrode surfaces; E, and Ec
are the potentials of the unpolarized anode and cathode respectively. Figure 2 shows the
corresponding linear polarization curves. The slope of the cathodic branch is

di(x, 0)

dP(x, 0)

i(x, 0) - 0
P(x, 0) - EC

ELECTRODE POTENTIAL P(x,O)

Fig. 2-Linear polarization curves, y = constant (schematic)
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E. McCAFFERTY

Rearranging,

dE
P(x, 0) - i(x, 0) - = EC , (4)

di

where we have written the simpler (and more conventional) notation dE/di for dP(x, 0)/
di(x, 0), the slope of the linear polarization curve. Use of Eq. (3) for i(x, 0) in Eq. (4)
gives

P(x Io) - {-UL FaP(x, z)] dE }= EC (5)
{ P |?aZ I Z=O di }

The Wagner polarization parameter 2 is defined [2, 13] as

ajdEi' (6)

where 2 has the dimensions of length. Use of Eq. (6) in Eq. (5) gives

P(X, 0) - SC [rapIx Z) = EC (7)

A similar equation holds for the anodic branch:

P(x, O) - S2a rap~,Z)I = Ea* (8)a az )] Z=O a(8

If both branches of the polarization curve have the same slope, Pa = £ 2,= A, and

P(x,0)- - [aP(X ,)] = S(x), (9)

where

Eat 0<x<a;
S(x) =

EC , a <x <c.

Figure 3 shows an example of polarization data [14] which give good linear plots.
When the current is plotted in the usual logarithmic way, the cathodic curve is seen to be
typical of a diffusion-controlled process, whereas the anodic curve is typical of activation-
controlled dissolution. Yet both curves are linear in current in the millampere range as
the short-circuited potential is approached.

Tables 1 and 2 list a variety of systems which have been observed to display linear
polarization curves over at least a portion, if not the entirety, of current range. Thus
the mathematical assumption of linear polarization is not always unrealistic. More
serious, however, is the added assumption that the anodic and cathodic linear polariza-
tion parameters are equal.

4
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Fig. 3-Potentiostatic polarization of iron (10-mil crevice) and platinum
(open) in 0.06N NaCl (a) Plotted semilogarithmically (b) Plotted linearly

Values of the anodic linear polarization parameters 2a compiled in Table 1 range
from 0 to 5 cm. Values of the cathodic parameter Sc in Table 2 range from approximately
0.2 to 250 cm. Comparison of 2a and 2c for a given system shows that 2c is generally
larger. Thus the assumption that 2a = 2c is generally not valid.

However, in the case of a partially restrictive third dimension, such as a crevice above
the anode, SQ and 2c are probably closer to each other than for totally open geometries.
With localized geometries, as in crevices or pits, it is well known that the local corrodent
has a different composition than the bulk solution [17, 18]. Thus the conductivity
o used to calculate 2 should be that of the internal electrolyte. In the case of iron, the

internal electrolyte of a macro facsimile of an iron crevice or pit modeled according to
thermodynamic reasoning [19] has been found to be approximately 4M in FeC12 [20].
For 0.1N NaCl, for instance, the anolyte conductivity ua would be approximately ten
times that of the bulk catholyte conductivity UC [21]. These considerations would tend
to bring anodic and cathodic values of 2 into closer agreement.
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TABLE 1
Selected Values of Anodic Linear Polarization Parameters 2a

Metal Solution Solution | a Region of Source
Thickness (cm) Linearity

0.06N NaCl 10-mil crevice 0.75 See Fig. 3 Fig. 3
Iron (254,um)

0.1N NaCl bulk 0 i > 100 pA/cm2 Calculated from the data of Rosenfeld [15]
70,um 1.3 i > 150

Zinc 0.1N NaCl bulk 0.80 i > 50)uA/cm 2 Calculated from the data of Rosenfeld [15]
165,um 0.80 i>75

20% CrO3 bulk 1.12 - 3.12 Compiled by Waber [16]

Magnesium 0.1N NaCl bulk 0.32 i > 50 pA/cm 2 Calculated from data of Rosenfeld [15]
70,um 0.91 i > 100
165,um 0.43 i > 50

Copper 1M Cu(Cl04)2 bulk 0.3 Compiled by Waber [16]

Steel 0.01N NaBr bulk 0.80 i < 1 mA/cm2 Gal-Or, Raz, and Yaholom [8]
(pH= 2.2)

tij

0n
It
121n
�v
�_-3



Selected Values
TABLE 2

of Cathodic Linear Polarization Parameters 2C

Metal Solution Solution 2CRegion of SourceMetal Solution Thickness (cm) Linearity

Iron 0.1N NaCl bulk 92 i < 75 PA/cm2 Calculated from data of Rosenfeld [15]
3.1 i >100

100 Am 22 i> 100

Zinc 0.1N NaCl bulk 79 i < 50 pA/cm 2 Calculated from data of Rosenfeld [15]
3.1 i >100

100 Pm 11 i > 100

0.05N KCl bulk 0.718 _ Compiled by Waber [161

0.2N KCl03 bulk 0.21 Compiled by Waber [16]

Magnesium 0.1N NaCl bulk 0.64 i < 125 pA/cm2 Calculated from data of Rosenfeld [15]
2.2 i >125

100 Pm 6.3 i > 100

Copper 0.1N NaCl bulk 81 i < 150 pA/cm2 Calculated from data of Rosenfeld [15]
165 pm 44 i < 250

Platinum 0.06N NaCl bulk 239 See Fig. 3 Fig. 3

--I
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E. McCAFFERTY

Thus the assumption that anodic and cathodic linear polarization parameters are
equal, though not necessarily valid, does simplify the mathematics to allow a first
estimate of current and potential distributions within corrosion cells.

BULK ELECTROLYTE

Mathematical Analysis

The cell geometry is shown in Fig. 4. The anode and cathode edges are coplanar
circles of radii a and c respectively. With the circular geometry, it is convenient to recast
the Laplace equation

a2p a2p a2p
ax 2 + ay + aZ2 = ° (1)

in cylindrical coordinates through the usual relations

x = rcosO

y = rsinO (10)

z =z.

The result is

a2p 1 aP a 2 P
-+ - + =0

3r
2 r ar az+ 

with the term in a 2P/ao2 deleted because the potential is not dependent on the angle 0.
The general approach is to

* solve Eq. (11) for P(r, z) subject to the appropriate boundary conditions, which
will be listed below,

and then to

* evaluate the local current density i(r, 0) at the electrode surface using Eq. (3)
in the form

i(r, 0) = -a [P(r )] . (12)

We next list the appropriate boundary conditions:

Boundary condition 1: No current flows parallel to the metal surface across the
terminal edge of the cathode (r = c). Then

8
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TOP VIEW

r =a
I
I
I
I
I
I

\ I

1 Z=°

PI(

0 r o r -C

Fig. 4-Cell geometry and electrode potentials

i(r, c) = -a [3P ) = 0,
L ar I _

or

aP(r, z)]

F i r -
= 0.

r=c

Boundary condition 2: No current flows across the symmetry line r = 0*:

faP(r, z)1

Far r=O

= 0

*This boundary condition is required to make P(r, z) bounded at r = 0. Alternately we could write the
boundary condition as lim P(r, z) < L, where L is finite.

r-0
9

ELECTROLYTE

(13)

(14)

(15)
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The physical interpretation is that electrons lost in the anodic reaction migrate to the
nearest cathodic region rather than taking the longer path across the line r = 0.

Boundary condition 3: The potential P(r, z) must be bounded at the upper physical
boundary of the electrolyte, that is,

lim P(r, z) < M,
Z-+00

(16)

where M is some finite number.*

Boundary conditon 4: The final boundary condition describes the potential at the
electrode surfaces and is given by Eq. (8) in terms of r:

P(r, ) - [FP(r, z)]
LF-zJ Z0O

where

S(r) = 0
cI a <r~c.

(17)

(18)

The solution to Laplace's equation in cylindrical coordinates, that is, Eq. (11) subject to
boundary conditions 1 through 4, is

+c2 -a2)
+ __ E + (Ea

00

-Ecn) L
n=1

2 a / a
x C

( C x) [JO T)

exnzlc Jo (19)

(1 9)

where Ea and EC are the potentials of the unpolarized anode and cathode, Jo and J1
are Bessel functions of order zero and one respectively, and the xn are the roots of
J1 (x) which give J1 (x) = 0. A detailed derivation of Eq. (19) is given in Appendix A.
Along the electrode surface, the potential variation with radial distance is thus

(a) 2 2)w (!3, (Xn a, ( P(r, 0) = (C E + (c a)E~ + (Ea -Ec) Xn r)~)~' ~~

We next evaluate the current distribution along the metal surface from

i(r, ) = E [FP(r, z)1
Laz Z=O

*Alternately, there is no current flow across the upper boundary of the electrolyte.

(20)

(12)

10

P(r, z) = (-c) 2Ea

= S(r) ,
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Differentiation of Eq. (19) gives

00 J / a)

i(r, 0) = 2-(E - n=1 ( + c ) [ox c 2 J (x c) (21)

nI(1 c Xn [Jo (Xn

or

i(r, 0) -c 1 (X n ) Jo (x ) c (22)

2 c (Ea -Ec) n=1 + X J0(X

The left-hand side of Eq. (22) is dimensionless and may be termed the "dimensionless
local current density" i*:

i(r, 0) (23)
a

2 - (E E

Thus the current distribution depends only on the cell dimensions a and c and on the
polarization parameter 2 or, more properly, on the "reduced" radius r/c, the "reduced"
cell dimension a/c, and on the "reduced" polarization parameter 2/c.

Numerical Evaluation

Figure 5 shows the dimensionless local current density i* as a function of reduced
polarization parameter 2/c for a fixed cell configuration of a/c = 0.5. The points in
Fig. 5 were computed using Eq. (22) with n = 500, except near r/c = 0 and r/c near
0.5, where 2000 terms were needed for sharp convergence. The computer program used
in the evaluation is given in Appendix B.

As seen in Fig. 5, the local current density is uniform across the cell for the larger
values of 2, and there is only a slight increase in corrosion current density at the
anode/cathode junction for the smallest 2 considered.

The corresponding potential distributions are given in Fig. 6. Potentials were cal-
culated from Eq. (20) with Ec taken to be 0; n = 100 sufficed to evaluate the sum. Figure
6 shows the potential is uniform across the cell for 2/c = 100, nearly uniform for 2/c = 10,
and not uniform for 2/c = 1.

For a given electrolyte (fixed conductivity a), the larger 2 corresponds to a larger
value of dE/di: 2 = a I dE/di I. Thus the larger 2 means a more polarizable electrode,
that is, a greater change in potential for a given current, as shown in Fig. 7.

11
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X/c . I

ANODE | CATHODE

I I I lI l I I I I I I r/c
0.2 0.4 0.6 0.8 1.0_~~~~~~ -

tic. 10

ANODE | CATHODE

I I I I I I I I I r/c
0.2 0.4 0.6 0.8 1.0

_/c - 100

ANODE | CATHODE

I I I I I I I I r/c
0.2 0.4 0.6 0.8 1.0

Fig. 5-Current distribution under bulk electrolyte for different polariza-
tion parameters at a fixed cell size (a/c = 0.5)

Thus Figs. 5 and 6 show that the more polarizable the electrode system, the more
uniform the distribution of potential and current. That is, the effect of coupling such
electrodes is to distribute the polarization effect throughout the corrosion cell. For the
least polarizable case shown (2/c = 1), anodic and cathodic areas are the least affected by
each other, there is the greatest drop in potential across the anode/cathode juncture, and
hence there is some intensified attack at that boundary.

Figure 8 shows the effect of changing the cell dimensions. For a fixed anode radius
and polarization parameter, an increase in cathode radius c leads to intensified attack at
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-4

-3

Q- -2

0
0 0.2 0.4 0.6

r/c
0.8 1.0

Fig. 6-Potential distribution under bulk electrolyte for different polariza-
tion parameters at a fixed cell size (a/c = 0.5). (Ec = 0.)

the anode/cathode boundary for the smaller 2 only. There is no size effect for the more
polarizable electrodes.

THIN-LAYER ELECTROLYTE

Summary of Equations

The case of a thin-layer electrolyte has been treated by Gal-Or and coworkers [8].
The boundary conditions are the same as the bulk case, except that the requirement that
the potential be finite at the electrolyte/air interface,*

(16)lim P(r, z) < M,
Zs w

*or that there be no current across that interface.

13
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Z 6.1 

I-

EC En
POTENTIAL E

Fig. 7-Effect of the parameter 2 on the polarization curve
(schematic)

is replaced by the requirement that there be no current flow across the outer boundary
z= b:

[aP(r, z)1

L az Iz=b
= 0. (24)

The solution to Laplace's equation subject to Eqs. (14), (15), (17) and (24) is:

P(r, z) =(c) Ea +

00 X C C
+ (Ea - EC~) T n b xnxn 

exnzCJo (n- ),

(25)

so that

14
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Fig. 8-Effect of a change in cathode size on the current distribution under
bulk electrolyte for a fixed anode size and fixed polarization parameter
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P(r, 0) = (-c) E + ( c2-' ) Ec

2 aJ ( a)
+ (E -E E Xn c t c( J0 (x- r) (26)

n=1 [1+ c x tanh (X n c)] T[ ° ]

and*

00

i* -i(r, 0) , Ec 1 a 2 Jo (xn r) (27)

2 - (Ea -EC) n=1 [coth bx- +-n J0x)

Again i* is dimensionless and may be termed the dimensionless local current density. It
depends only on the cell dimensions a/c, b/c, r/c and on the reduced polarization param-
eter 2/c.

Both the hyperbolic tangent and hyperbolic cotangent approach unity as the argument
becomes infinite, so that when the thickness b of the electrolyte layer approaches infinity,
Eqs. (26) and (27) in P(r, 0) and i* respectively revert back to the expressions for the
bulk electrolyte, that is, Eqs. (20) and (21).

Numerical Evaluation

Evaluation of i* according to Eq. (29) is shown in Fig. 9 for different electrolyte
thicknesses for a fixed cell size a/c and a fixed reduced polarization parameter 2/c. It is
seen that the anodic current density is concentrated at the anode/cathode boundary for
the thinner electrolyte layers. The corresponding potential distribution, calculated accord-
ing to Eq. (26), is given in Fig. 10 (with Ec again taken to be zero). Like the current
distribution, the potential distribution is uniform only for the thicker electrolyte layers.

The effect of variable 2/c on i* for a fixed geometry (constant a/c and b/c) is shown
in Fig. 11. The smaller values of 2/c (less polarizable electrodes) lead to pronounced local
attack near the edge of the anode. The corresponding potential distributions are shown
in Fig. 12. As might be expected, the smaller values of 2/c produce the sharpest drops
in potential at the anode/cathode juncture.

The effect of variable cell size on i* is shown in Fig. 13, where a, b, and S are fixed
but c is allowed to vary. A decrease in the ratio of a to c leads to an increased local
attack near the anode edge.

*The expression by Gal-Or and coworkers for the local current density [Eq. (38) in Ref. 8] contains
a misprint. Also, our notation follows Waber, so that b and c are interchanged relative to Ref. 8
and 2 and x,, replace k and kn in Ref. 8.

16
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Comparison with Experiment

Few experiments have been done with circular electrodes. However, this current
mathematical analysis is in general agreement with the investigations of Rosenfeld and
Pavlutskaya [15, 22]. For a circular iron anode in contact with a copper disc cathode,

17
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0

-0.2 - BULK ELECTROLYTE

ANODE CATHOD

0 0.2 0.4 0.6 0.8 1.0

Fig. 10-Effect of electrolyte thickness on the potentialdistribution for a
fixed ratio of anode radius to cathode radius (a/c = 0.5) and fixed polariza-
tion parameter (21c = 100). (Ec = 0, n = 100.)

there was a non-uniform distribution of potential under a 165-grm layer of 0.1N NaCl.
The difference in potential between the points r = 0 and r = c was nearly 300 mV, with
most of the potential drop at the anode/cathode boundary. With bulk electrolyte, the
potential distribution was more uniform with a potential drop of only 50 mV. Photo-
micrographs of the anode/cathode boundary profile showed that penetration near the
contact was much greater with the thinner electrolyte.

These authors also reported current-distribution curves for a Cu/Zn couple which
were conjoining rectangles rather than concentric circles. However, for that related
geometry, the anodic attack was greatest near the anode edge for the thinnest electrolytes
and was uniformly distributed for the bulk electrolyte (O.tN NaCl).

In the case of another related geometry, where iron under crevices (thin electrolytes)
was in contact with either iron or platinum under bulk electrolyte, the attack was in-
tensified near the outermost edge of the iron anode [14].

TOTAL CELL CURRENT

As mentioned earlier, Gal-Or, Raz, and Yahalom [8] have evaluated the total cell
current rather than point-by-point values along the cell radius. These investigators showed
that the total current increases with:

18
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Fig. 11-Effect of polarization parameter on the current distribution for a fixed cell
geometry (a/c = 0.5, b/c = 0.001). (n = 2000 for 2/c = 1, n = 1000 for 2/c = 10, and
n = 500 for £/c = 100; in all cases, n = 2000 to 4000 at 0 and near a/c.)

* increases in electrolyte thickness (up to a limit);

* decreases in polarization parameter;

* increases in anode radius (for a fixed cathode radius).

The total anodic current was evaluated by integrating the local current density:

19
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Fig. 12-Effect of polarization parameter on the potential distribution for a
fixed cell geometry (a/c = 0.5, b/c = 0.001). (Elc = 0, n = 100.)

ra r27r
1total,anodic = a i(r, O) r drdOUefr 000

Use of i(r, 0) from Eq. (27) for thin layers gives [8]

1totalanodic 4 (c)

0.0

(Ea - Ec) E
n=1

[J1 (xa)2]
(29)

[coth (Xn Žc) + c Xn] [J0(Xn )]
2X

20
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Fig. 13-Effect of cathode size on the current distribution (anode
size, solution thickness, and polarization parameter are fixed)

For bulk electrolyte, the term coth (x, b/c) is replaced by 1. An internal check on the
current distribution can be made by comparing the total current determined by mathemati-
cal integration from Eq. (29) with the total current determined by graphical integration
of the current density distribution curve [i*(r/c) as a function of r/c]. By definition,

i*(r, c) -- i(r, 0)
a2 - (Ea -Er)

c

(23)

so that Eq. (28) can be written

21
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itotlandic 47rc (E _E) J r* )dr, (30)a ~~0

which can be put in the form

1totalanodic - 4rac(Ea (c) (c.) d(c) . (31)

G*

The integral in Eq. (31), labeled G*, can be determined graphically from current-distribution
plots such as Figs. 5, 8, 9, 11 and 13. Comparison of Eqs. (29) and (31) shows that

total,anodic (a) = G* (32)
47rac (Ea -EC) c

where Z is the sum indicated in Eq. (29).

Table 3 shows that the total anodic current determined by graphical integration of
the current density distribution curves is in agreement with values determined by mathemati-
cal integration after Gal-Or and coworkers. Table 3 also shows the effect of the various
parameters on the total anodic current; these trends have already been reported by Gal-Or,
Raz, and Yahalom [8] and are listed at the beginning of this section.

As a final check, the total cathodic current was computed in some cases by graphical
integration of current density distribution curves from r/c = a/c to r/c = 1. The total
cathodic current was equal to the total anodic current, as required.

SUMMARY

The distribution of current in a circular corrosion cell has been computed based on
the assumption that the electrolyte has a uniform composition. The mathematical equations
are summarized in Table 4. Numerical evaluation of the current-distribution function
shows that:

* Current distribution is more uniform along the metal surface under bulk elec-
trolytes than under thin layers of electrolyte.

* Under thin layers of electrolyte, corrosion attack is intensified at the anode/
cathode junction. For a fixed anode radius, the local attack is promoted by:

* a decrease in electrolyte thickness,

* a decrease in the linear polarization parameter,

* an increase in the cathode size,

where in each case the remaining parameters are held constant.
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Table 3a
Comparison of the Total Anodic Current Determined by Mathematical and Graphical

Integration for a Fixed Ratio of Anode Radius to Cathode Radius a/c

103 total,anodic

a _ b 4vrac(Ea -Ed)
c c c Mathematical Integration Graphical Integration

0.5 100 0.0005 0.252 0.250
0.001 0.318 0.317
0.002 0.375 0.379
0.01 0.445 0.445
bulk 0.467 0.468

0.5 10 0.001 1.23 1.17
1 3.92 3.71

0.5 100 bulk 0.467 0.468
10 4.59 4.56

1 38.8 38.1

Table 3b
Comparison of the Total Anodic Current Determined by Mathematical and Graphical

Integration for Variable Cathode Size with a = 1, b = 0.01, 5 = 10

103 total,anodic

a b 2 4ira(Ea - Ec)
c cc C c Mathematical Integration Graphical Integration

4 0.25 0.0025 2.5 7.52 7.52
2 0.5 0.005 5 7.62 7.62
1.33 0.75 0.0075 7.5 6.67 6.66
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APPENDIX A

MATHEMATICAL SOLUTION FOR THE ELECTRODE POTENTIAL OF
CIRCULAR CELLS UNDER BULK ELECTROLYTE

In cylindrical coordinates, Laplace's equation

a2p(xly, z) + a2P(x, y, z) + a2P(x, y, z) = 0 (Al)
ax2 + 2 + z 2 -0(l

becomes

a2P(r, Z) 1 aP(r, z) a2P(r, z)
r2 f-+ ar + 2 =0, (A2)

where the 0 term is deleted because P is not 0 dependent. The general solution to Eq.
(A2) is well known but will be outlined here for the convenience of the reader. One
method of solution is separation of variables, in which solutions of the form

P(r, z) = R(r)Z(z) (A3)

are sought. Thus

aP
= R'(r)Z(z), (A4a)

ar

a2p
= R"(r)Z(z), (A4b)

and

32p 
a2 = R (r)Z(z), (A4c)

where the prime and dot indicate differentiation with respect to r and z respectively.
Using Eqs. (A4) in Eq. (A2) and making appropriate rearrangements gives

R"(r) 1 R'(r) Z(z) (A5)
R(r) r R (r) Z(z)
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The left side is now a function of r only and the right side of z only, so that each side
of Eq. (A5) can be set equal to an arbitrary constant, -X2. That is,

R(r) + 1 R'(r) = _X2

R (r) r R (r)
(A6)

and

Z(Z) = 2
Z(z )

The first separated equation is thus

R"(r) + -R'(r) + X2R(r) = 0.
r

(A7)

(A8)

After making the substitution s = Xr, which defines s, and
manipulations, Eq. (A8) takes the form

d 2R 1 dR 
ds2 + -- +

performing some algebraic

(p = 0),

which is Bessel's equation of order p and has the independent solutions [Al, A2] R = J (s)
and R = Yp(s), where Jp(s) is the Bessel function* of the first kind of order p and (S5
is Neumann's Bessel functiont of the second kind of order p. The general solution to Eq.
(A9) is then

R(r) = AJO(Xr) + BYO(Xr), (A10)

where A and B are constants. The solution to the second separated equation

Z(z) - X2 Z(z) = 0 (All)

is

Z(z) = C' ez + C' e- ,P (2)P 
n=O

(A12)

\ n2

n !(p +n)

oy(5 ) o0 ) logs + ~22 22.42( +2) 22-4262(1 + 2 +3) - -

27
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where C'1 and C'2 are constants. Use of Eqs. (A10) and (A12) in Eq. (A3) gives the
general solution of Laplace's equation:

P(r, z) = [AJ0 (Xr) + BYO(Xr)] [C'edZ + C'e-Xz] - (A13)

The constants A, B, C', and C2 are to be evaluated from the specific boundary
conditions, which have been listed previously:

[aP(r, z)]

ar r- O

EaP(r, z)

L- a-r J rc

= 0

= 0

(A14)

(A15)

(A16)lim P(r, z) < M
z-+. 

[aP(r, z)1 a

L az IZ lE ,C

0 < r < a;

a < r < c.
(A17)

Differentiation of Eq. (A13) gives

+ C' e-Z I. (A18)

According to the boundary condition of Eq. (A14), Pr(r, z) = 0 when r = 0, so that

-A1 J1 (0) - B NY1 (0) = 0, (A:

which requires that B = 0 because Y 1 (0) is infinite and J1 (0) is already zero [A2]. If
we write AC' = C1 , and AC2 = C2, then

P(r, z) = J0Q(r) [CleXz + C2eXZ] * (A:

According to the boundary condition of Eq. (A15), Pr(r, z) = 0 at r = c, so that

-XJ 1 (Xc) [CleXZ + C2 e-XZ] = 0 (A-

or

J1 (Xc) = 0 . (A:

19)

20)

21)

22)

Let these roots of J1 which give J1 (x) = 0 be called x,, as shown in Fig. Al; that is,

n = 1,2,3,... . (A23)

28

P(r, z) - 2

aP(r, z)
___= [-AXJ.OXr) - BXY 1 (Xr)] [Ce~z

Xn = Xnc,
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5 10 15 20

Fig. Al-Zeros of the Bessel function Jl(x), denoted by x,

or

xx =nn c

Thus

P(r, z) =Jo r(x0 C) [ClexnzIC + C2 exnz/c]

The boundary condition of Eq. (A16), which requires P(r, z) to be bounded, is satisfied
if C1 = O. Thus

P(r, z) = C2J 0 (xn ) e 7XnZ/C (A26)

is a particular solution to the problem. The general solution is then a linear combination
of all the n solutions:

00

P(r, z) = CO + > CnJo(?.nr)e nz,
n=l

(A27)

29
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(A24)

(A25)
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with X, = x,/ 1c. The constants C, are evaluated from the remaining boundary condition:

P(r, 0) - 2 1 P = z)1 = S(r) = {
Ec 9

From Eq. (A27),

00

P(r, 0) = CO + E C8JO(Xnr),
n=1

and

- EraP(r, z)]
00

= RE CnX n J 0 (Xnr).
n=1

Using Eqs. (A28) and (A29) in Eq. (A17) gives

Co

CO + E C.JO(Xnr) +
n=1

00

2 xnCnJO(Xnr) = S(r),
n=1

One next employs the orthogonal property [A3]:

c 0 ° n * m ;
rJo(Xnr)Jo(Xmr) dr = 2[jo(MC)] 2,

r--0 
(A32)

n = m.

Multiplying both sides of Eq. (A31) by rJO(Nmr) dr and integrating from r = 0 to r = c
gives the left-hand side (L.H.S.) of the equation to be

L.H.S. = f C0rJ0(Xmr) dr + fc E C8(1 + 2 Xn)rJO(Xnr)Jo(Xmr) dr
r0 rO n=1

(A33)

and the right-hand side (R.H.S.) to be

30

Or<a;
a < r < c .

(A17)

(A28)

(A29)

or

(A30)

C0 + T Cn(1 + R Xn)J0 (Xnr) = S(r) .
n=1

(A31)
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R.H.S. = S(r)rJ0 (Xmr) dr.
r0

The first integral in Eq. (A33), denoted as I,:

I1 f C(rJO(Xmr)dr,
r0

is evaluated first. It can be shown [A2] that

frJo(Nmr) dr = 1 [rJ,(Xmr)] ,
J ~~~M

II C [cJi(Xmc)] ,

but Ji(Xmc) = 0 according to Eq. (A22). Thus I, = 0, so that

L.H.S. = [C(1 + 2 fC) f rJo(Xnr)JO(Xmr) drl
n=1 IC 0 

All terms are zero for n : m, so the only term which survives the integration is

L.H.S. = CM(1 + Nm) 2 [jo(mC)]2 J(m) 2

Operating on the right-hand side,

R.H.S. = J S(r)rJO(Xm r) dr + f S(r)rJo(Xmr) dr ,

a rC
R.H.S. = Ea rJo(Xmr) dr + Ec f rJ0 (Xmr) dr .

F0 F~~~a

Use of Eq. (A36) gives

E E
R.H.S. =Ea [aJ,(X\a)] + EC

'X NM1 X)]+-
[cJI (Xmc) - aJ (Xm a)] I

31
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(A35)

(A36)

(A37)

(A38)

(A39)

or

(A40)

(A41)

(A42)



E. McCAFFERTY

but again Ji (Xm c) = 0; thus

R.H.S. = a J,(Xma) (E, -E,) * (A43)

Equating Eqs. (A39) and (A43) gives

2 XCm(1 + £^Am) 2 [Jo()X)]2 = A J1 (Xta) (Ea-E) * (A44)

Solving for Cm and replacing the dummy variable m by n gives the coefficients C n

a J1 (Xn a) (E - E,)
C = n a (A45)

2(1 + SX)C J(tc]

One next solves for C0 . This time each side of Eq. (A31) is multiplied by r dr and
integrated from r = 0 to r = c:

Cc C 0cC

C0 J rdr + J E Cn(1 + 2Xn )rJ0 (X nr) dr = J S(r) dr . (A46)
Or=On0 r=O

Here the second term vanishes, as may be seen by evaluating the integral according to
Eq. (A36). Again the right-hand side of Eq. (A46) must be split into two integrals. The
result of the simple integrations in Eq. (A46) is

C0 c Ea + c2) Ec (A47)

Use of the expressions for Cn and C0, as given by Eqs. (A45) and (A47), in Eq. (A27)
with Xn =x n/c gives the desired expression for the potential distribution in the system:

COP(rX z) =(-f) Ea + ( c2 a) Ec + (Ea - E) E (i, )]~ 2 e°Z/J (x n )

(A48)
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APPENDIX B
COMPUTER PROGRAM FOR EVALUATION OF LOCAL CURRENT DENSITY FOR

COPLANAR CONCENTRIC CIRCULAR ELECTRODES UNDER BULK ELECTROLYTE

PROGRAM BULK1
C
C THIS PROGRAM COMPUTES THE LOCAL CURRENT DENSITY ALONG THE RADIUS
C FOR CO-PLANAR CIRCULAR ELECTRODES COVERED BY BULK ELECTROLYTF
C FOR THE CASE WHERE ANODIC AND CATHODIC WAGNER POLARIZATION
C PARAMETERS ARE EQUAL.
C
C AxRADIUS OF ANODE
C CuRADIUS OF CATHODE
C RaDISTANCE ALONG RADIUS
C LaWAGNER DOLARIZATION PARAMETER
C A/CzAR
C L/C LR
C R/C=RR
C X(N)wNTH ZERO OF BESSEL FUNCTION OF ORDER JORO
C

REAL LRoNJM2
DIMENSION XC5000),FACTOR(5000),TERM(5000)
K=500

C K-NUMBER OF TERMS IN SUM
READ 10,ARLR

10 FORMAT (2F10.O)
PRINT 11,ARLR

11 FORMAT (1419,5X7HAR*A/C F1O95,5X97HLRL/C= F1o.5,///)
PRINT 101

101 FORMAT (25X,*J (X(N))*#5X,8HX(N)0A/C,7Xs*J (P)*,4XllH(A/C)*J (P))
PRINT 102

102 FORMAT (26X,*o*,27X,*1*14X,*l*,/)
PRINT 103

103 FORMAT (6K,*N*,6X,*X(N)*s9X,*BESSEL2*,9X,*P*9X,*BESSEL1*,BX,
**NUM2*,BX,*OENOM1*,BX,*DENOM2*,7X,*FACTOR(N)*,///)
JORD 1
NO=K
CALL BESZERO(JOR0,NOtX)
DO 20 Nc1,K
P=X(N)*AR
T=X(N,*LR
BESSELlBESJ(P.1)
NUM2AR*BESSEL1
DENOM1=1.0 * T
BESSEL2=BESJ(X(N).0)
OENOM2=8ESSEL2**2
FAcTORCN) NUM2/(DENOMl*DENOM2)
PRINT 19,NJX(N)lRESSEL2tP,BESSEL1,NUM2,DENOM1,DENOM2,FACTOR(N)

19 FORMAT (X,I4,4(3X#F10.5),4(1XE13.5))
20 CONTINUE

READ 201,9RDELTARCUT
201 FORMAT ( F1O.0)
21 PRINT 22,RR
22 FORMAT (///3X9*RR= *FS.3///)

PRINT 221
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221 FORMAT (25X,8HX(N)*R/C,7X,-J (W)*)
PRINT 2,2

222 FORMAT (4lX,*o*0/)
PRINT 223

2Z3 FORMAT (6K,*N*T7X,*X(N)*,11X,*W*,9X*BESSEL3*96X,*FACTOR(N)e*8X,
**TERM (N) 0911X9*SUM*.///)
SUMMO.0
DO 30 N-1,K
WsX(N)*RR
BESSEL3=BESJ(WO)
TERM(N) -FACTOR (N) *8ESSEL3
SUM=SUM#TERM(N)
PRINT 29,',X(N),WSESSEL3,FACTOR(N),TERM(N),SUM

29 FORMAT (3KX,4,1XE12.5,2(3XF1O.5),3(3XE1.$5))
30 CONTINUE

RRmRR#DELTA
IF (RR.LE.RCUT) GO TO 21

99 END
C

SUBROUTINE BESZEROJORONOZERO) 00000100
C IDENT NUMBER - C3007R00 0000Q101
C TITLE - ZEROS OF THE BESSEL FUNCTION OF THE FIRST KIND 00000102
C IDENT NAME - C3-NRL'SESZERO 00000103
C LANGUAGE - 3600/380 FORTRAN 00000104
C COMPUTER * CDC-3800 00000105
C CONTRI8UTOR - JANET P. MASON, CODE 7813 00000106
C RESEARCH COMPUTATION CENTER, MIS DIVISION 00000107
C ORGANIZATION - NRL - NAVAL RESEARCH LABORATORY, 00000108
C WASHINGTON, D.C. 20390 00000109
C DATE - 1 JULY 1971 00000110
C PURPOSE - TO FIND THE FI8ST M ZEROS OF JSUBN(X) FOR 05N55 WHERE 00000111
C M IS SUPPLIED, 8Y THE USER, IN THE SUBROUTINE CALL 00000112

DIMENSION XJAO(4),XJA1(3),XJA2(2)tXJA3(6),XJA4(6),XJAS(9),ZERO(1) 00000200
DATA(XJAOu2.4048255577V5.5200781103,8.6537279129,11.791534439), 00000300

1 (XJAlx3.8317059702,7.0155866698910.173468135), 00000400
2 (XJA2z5.1356223,8.4172441), 00000500
3 (XJA3z6.3801619,9.7610231,13.0152007.16.2234640,19.4094148, 00000600
4 22.5827295), 00000700
5 (XJA4z7.5883427011,0647095914.3725367917.6159660,20.8269330, 00000800
6 24.0190195)t 00000900
7 (XJA5.8.7714838,42e3386042,15.7001741,18.9801339,22.2177999, 00001000
8 25.4303411,28.o266183,31.8117167.34,9887813) 00001100
PI=3.1415926536 00001200
HOLD=4.0*JORD*JORD 00001300
GO TO (1*293,4,5,6tJORD*1 00001400

1 DO 11 IlNO 00001500
IF(I.GT.4)GO TO 20 00001600
ZERO( I) -XJAO (I) 00001700

11 CONTINUE 00001800
RETURN 00001900

2 DO 12 I-1,NO 00002000
IF(I.GT.3)GO TO 20 00002100
ZERO(I)mXJA1(I) 00002200

12 CONTINUE 00002300
RETURN 00002400

3 DO 13 I=1,NO 00002500
IF(I.GT.2)GO TO 20 00002600
ZERO (I)u XJA2(I) 00002700

13 CONTINUE 00002800
RETURN 00002900

4 DO 14 I=1,NO 00003000
IF(I.GT.6)GO TO 20 00003100
ZERO(I)=XJA3(I) 00003200

14 CONTINUE 00003300
RETURN 00003400

34



NRL REPORT 7835

5 DO 15 Ia1,NO 00003500
IF(I.GT.6)GO TO 20 00003600
ZERO(I)*XJA4(I) 00003700

15 CONTINUE 00003800
RETURN 00003900

6 DO 16 IalqNO 00004000
IF(IoGT.9)GO TO 20 00004100
ZERO (I) 1XJA5 (I) 00004200

16 CONTINUE 00004300
RETURN 00004400

20 BETAU(PI/4.0)*(2.o*JORD+4.O*I-1.0) 00004500
WlSBETA*8.0 00004600
W2=Wl*Wl 00004700
ZERO(I)zBETA-(HOLD*10Ol/Wl*( 1O4l1o/W2*(4.o*(7.0*HOLD-3lo1)/3.0 00004800

1 *1.0/W2*(32.o*(83*0HOLD*HOLD-982.O*HOLD+3779.o)/15.0 00004900
2 v.1O/W2*(640o*(6949.o*HOLD*HOLD*HOLDO153855.0*HOLD*HOLD 00005000
3 +1585743.0*HOLD.6277237.0)/105.0))f) 00005100

GO TO (11,12,13914,15,16)JORD.l 00005200
10 END 00005300

C
FUNCTION BESJ(X,N) BESJ 1
DATA(Rom.2827844947E8),(RHl.o685265989 1 E7),(R2u.38831312263E6), BESJ 2

1(R3=-.90578674277E4),(R4x.lo83O6963E3),(R5u.o73 85335935), BESJ 3
2(R6=.29212672487E.2),(R7..o65050170571E.5),(R8=.64538018051E.8), BEsJ 4
3(SOz.2827844947EB)8(Slw.21695247743E6),(S2=.70046825147E3). BESJ 5
4(Aoz2.532342o902E2),(Alz4.22177o4lBE1),(A2s5.2443314672E-1), BESJ 6
5(BO=.44884594896E3) , (Bl75322048579E2), BESJ 7
6(COm-1.2339445551EI)t(Clw-2.7788921o59),(C2u'4o9517399126E-2), BESJ 8
7(Olm.4100554523E2)v(F364.),(G=4.72236648E21), BESJ 9
8(DOn.17496878239E3), BESJ 10
A(RROu.98087274959E7),(RR1--.11425325721E7),(RR2uo4o946213625E5)o BESJ 11
B(RR3=-.66660119856E3),(HH4=.57575414035E1),(9R53-.27904475519E.1),BESJ 12
C(RR6=.73493132111E*4),(RR7z-*84306821641E-7), BESJ 13
D(SSOu.19617454991E8),(SSlo.16711673184E6),(SS2=o60777258247E3), BESJ 14
E(B8=O.6283685663lE3),(BBI=.97300094628E2), BESJ 15
F(DDO.21IB5478331E3),(DDUI.46917127629E2), BESJ 16
G(AAO=3.5451899975E2),(AA1=5.5544843O21E1),(AA2=6o5223084285E-1), BESJ 17
H(CCO=4.482234822RE11)(CC1=9.7348068764),(CC221.7725579145E-1, BESJ 18

DeX*X BESJ 19
IF(NEQO) GO TO 6 $ IF(N.EQ.1) Go TO 7 $ GO TO 8 BESJ 20

6 IF(D-F)19192 BESJ 21
1 Pz((((R*D+R7)*D+R6)*DR5)*D+R4)*D = P=(((PN3)*DR2)*DOR1)*DRO BESJ 22

BESJ =P/(((DS2)*DS1)*D+SO) S RETURN BESJ 23
2 IF(D.GTG) GO TO 9 BESJ 24

A=ABS(X) S D=F/D BESJ 25
Pz((A2*0+A1)*D*AO)/((D.B1)*D+BO) BESJ 26
Qz ((C2*DCl)*D+CO)/(A*((D+D1)*D.D0)) BESJ 27
BESJ *(COS(A)*(P.Q),SIN(A)*(P-Q))/SQRT(A) BESJ 28
RETURN BESJ 29

7 IF(D-F)11,11,21 BESJ 30
11 P=((((((RR7*D+RR6)e*DRR5)*D.RR4)*DORR3)*D+RR2)*D+RR1)*.DRRO BESJ 31

BESJuX*P/(((D+SS2)4D.SS1)*eOSSO) S RETURN BESJ 32
21 IF(U.GTG) GO TO 9 BESJ 33

A=ABS(X) S D=F/D BESJ 34
Px((AA2*D.AA1)*D.AAO)/((6,BB1)*D+BBO) BESJ 35
Qu-(CC2*DCCI)*D+CCO)/(A*((D+DD1)*D+DDO)) BESJ 36
Am( COS(A)*(Q-P)+SIN(A)*(Q+P))/SQRT(A) $ IF(X*LT*O)A=-A BESJ 37
BESJ'A BESJ 38
RETURN BESJ 39

8 PRINT 81#N BESJ 40
81 FORMAT(//15X*ERROR IN BESJ, N **I5) BESJ 41

GO TO loo BESJ 42
9 PRINT91,X BESJ 43

91 FORMAT(//15XCERROR IN BESJ9 ARGUMENT X TOO LARGE. X ' *E17.16) BESJ 44
100 BESJz1.E300 BESJ 45

END BESJ 46
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APPENDIX C
COMPUTER PROGRAM FOR EVALUATION OF LOCAL CURRENT DENSITY

FOR COPLANAR CONCENTRIC CIRCULAR ELECTRODES
UNDER THIN LAYERS OF ELECTROLYTE

PROGRAM THIN1
C
C THIS PROGRAM COMPUTES THE LOCAL CURRENT DENSITY ALONG THE RADIUS
C FOR CO-PLANAR, CONCENTRIC, CIRCULAR ELECTRODES COVERED BY
C A THIN LAYER OF ELECTROLYTE.

C
C A-RADIUS OF ANODE
C CaRADIUS OF CATHODE
C BmTHICKNESS OF ELECTROLYTE LAYER
C L=WAGNER POLARIZATION PARAMETER
C RaDISTANCE ALONG RADIUS
C A/CwAR
C B/CxBR
C L/C-LR
C R/CxRR
C X(N)UNTH ZERO OF BESSEL FUNCTION OF ORDER JORD
C
C ANODIC AND CATHODIC WAGNER POLARIZATION PARAMETERS ARE EQUAL.
C

REAL LRNUJM1,NUM2
DIMENSION X(5000), FACTOW(SOO0)o TERM(5000)
K=500

C KuNIIMBER OF TERMS IN SUM
READ 10,AR9BRLR

10 FORMAT (3F1O.O)
PRINT 11, AR, BR, LR

11 FORMAT (l1lt5X17HARwA/C* F1O.5,5X97HBRzB/Cx F10.5,SX,7HLR*L/C=
*F1O*59///)

PRINT 101
101 FORMAT (26X,*J (XNt*96X96HXN*A/C98X9*J (P)*,8X,*TANH(P)*,4X,

**(A/C)j (P)*)
PRINT 102

102 FORMAT (28Xv*0*925Xv*1*928X,*1*,/)
PRINT 103

103 FORMAT (6K,*N*,6X,*X(N)*,9X,*BESSEL2*,9X,*P*,9X,*BESSEL1*OBX,
**NUM1*,8X,*NUM2*,8X,*DENOM1*BX,*DENOM2*t7X,*FA-.TOR(N)*X///)

JORDal
NO-K
CALL BESZERO(JORDNOtX)
DO 20 N-l,K
PmX(N)*AR
Q-X(N)*BR
TuX (N) *LR
SINHQu(EXP(Q)-EXP(*Q) )/2.o
COSHQ-(EXP(Q)+EXP(*Q) )02.o
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NRL REPORT 7835

TANHQ=SINHQ/COSHQ
NUM1 TANHa
DENOM=11.0 + (T*TANHQ)
QESSELI1BESJ (P,1)
BESSEL2-BESJ(X(N)9,0)
NUM25AR*BESSEL1
DENOM2uBESSEL2**2
FACTOR(N)x(NUMI*NUM2)/4DENOM1*DENOM2)
PRINT 19,94,X(N),BESSEL2,PBESSEL1,NUM1,9NM2,DENOM1,DENOM2,FACTOR(N

19 FORMAT (3KI4.1XE12.594(3X,F10.5)9,4(X,E13. 5 ))
20 CONTINUE

READ 201lRRDELTARCUT
201 FORMAT t3F1O.O)
21 PRINT 229RR
22 FORMAT (///3X,*RR= *F5.3///)

PRINT 221
221 FORMAT (25X,8HX(N)*R/Ct7X,*J (W)*)

PRINT 222
222 FORMAT (41Xt*O*9/)

PRINT 223
223 FORMAT (6K,*N*,7X,*X(N)*,JIX,*W*,9X,*BESSEL3*,6Xt*FACTOR(N)*,8X,

**TERM (N) *,1 lX*SUM*,///)
SUM=O.O
DO 30 Nz1,K
WmX (N) *RR
BESSEL3=BESJ(wO)
TERM (N) uFACTOR (N) *BESSEL3
SUM=SUM*TERM (N)
PRINT 299,9X(N),WBESSEL3,FACTOR(N),TERM(N),SUM

29 FORMAT (4XI4,1XE1225,2(3XF1O5)93(3XE1'5))
30 CONTINUE

RR=RR + DELTA
IF (RR*LE.RCUT) GO TO 21

99 END

SUBROUTINE BESZEROtJORD,NOtzERO) AND FUNCTION BESJ(XN) ARE GIVEN
IN APPENDIX Be
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